首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   4篇
  国内免费   2篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   3篇
  2019年   4篇
  2018年   6篇
  2017年   5篇
  2016年   4篇
  2015年   5篇
  2014年   3篇
  2013年   3篇
  2012年   8篇
  2011年   6篇
  2010年   3篇
  2009年   10篇
  2008年   10篇
  2007年   6篇
  2006年   6篇
  2005年   3篇
  2004年   6篇
  2003年   3篇
  2002年   2篇
  2001年   5篇
  2000年   8篇
  1999年   5篇
  1998年   3篇
  1997年   1篇
  1994年   1篇
  1990年   3篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1968年   1篇
  1967年   2篇
排序方式: 共有138条查询结果,搜索用时 31 毫秒
51.
Protein stabilizing potential of simulated honey sugar cocktail (SHSC) against chemical and thermal denaturations was studied using bovine serum albumin (BSA) as the model protein. The two-step, three-state transition of urea denaturation of BSA became a single-step, two-state transition along with the shift in the whole transition curve towards higher urea concentrations in the presence of increasing SHSC concentrations [8–20% (w/v)] as revealed by far-UV CD, fluorescence and UV difference spectroscopic results. Far-UV and near-UV CD spectra, UV difference spectra, ANS fluorescence and three-dimensional fluorescence results suggested significant retention of native-like conformation in 4.6 M urea-denatured BSA in the presence of 20% (w/v) SHSC. A significant shift was also noticed in thermal and GdnHCl denaturation curves of BSA in the presence of 20% (w/v) SHSC. Taken together, all these results suggested significant stabilization of BSA against urea, GdnHCl and thermal denaturations by SHSC.  相似文献   
52.
53.
54.
Moringa oleifera is a miracle plant rich in nutrients, antioxidants, and antibiotic properties. Present study was designed to evaluate various biochemical attributes of leaves and flowers of M. oleifera. Plant parts (leaves, flowers) of M. oleifera, collected from different roadsides of Multan district, Punjab, Pakistan, were used as experimental material. Result indicates that alkaloids, saponin, carbohydrates, fats, and protein had a high value in the aqueous extract of both leaves and flowers of M. oleifera. Whereas phenol content was high in methanolic leaves extract and the phenol contents were high in aqueous extract of flowers. The extract yield of M. oleifera leaves and flowers both showed a higher percentage in aqueous extract (57.5%), followed by methanol extract and lowest in ethyl acetate extract. Flavonoids contents were higher in ethyl acetate extract of leaves (33.67%) and aqueous extract of flowers (53.71%). While crude fiber was high in methanolic extract of leaves (12.40%) and in flowers crude fiber was high in ethyl acetate extract (15.86%). The moisture contents were higher in leaves (8.87%) than flowers (7.3%) and similarly, ash percentage in flowers (52.60%) than leaves (41.84%). Ethyl acetate extracts of M. oleifera leaves show antibacterial activity against Pseudomonas aeruginosa while methanolic extract of M. oleifera flowers shows antibacterial activity against Xanthomonas sp. Maximum growth inhibits show in all extracts of leaves against Aspergillus flavus, F. oxysporum, and P. glabrum except for the concentrated aqueous extract of leaves. While in flowers maximum growth inhibits all extracts against P. glabrum, A. niger, and A. flavus except the diluted ethyl acetate extract. Phytochemicals present in different parts of moringa have significant edible and commercial potential. Moringa extracts exhibited significant antimicrobial activity, therefore have applications in pharmaceuticals.  相似文献   
55.
Different probes such as far- and near-UV CD spectral signals, ANS binding, Trp fluorescence and three-dimensional fluorescence were used to study halogenol- versus alkanol-induced conformational transitions in the acid-denatured state (pH 1.0) of Aspergillus niger glucoamylase (GA). These alcohols showed significant retrieval of the protein structure, inducing both secondary and tertiary structural changes, as evident from the increase in the α-helix and decrease in ANS binding, respectively. However, halogenols were found more competent than alkanols, requiring lesser alcohol concentration to induce similar spectral change. The effectiveness of these alcohols showed the order: HFIP > TFE > 2-chloroethanol for halogenols while tert-butanol > 1-propanol > 2-propanol > ethanol > methanol for alkanols. Both Trp fluorescence and near-UV CD spectra showed anomalous pattern, though the order of effectiveness remained the same as found with far-UV CD spectra and ANS fluorescence. Three-dimensional fluorescence results of the acid-denatured state (pH 1.0) of GA in the presence of 5.5 M tert-butanol agreed well with the data obtained from far-UV CD and Trp fluorescence. All these results suggested the formation of partially folded states of GA obtained in the presence of these alcohols, being more effective with halogenols than alkanols.  相似文献   
56.
The DFNB74 locus for autosomal-recessive, nonsyndromic deafness segregating in three families was previously mapped to a 5.36 Mb interval on chromosome 12q14.2-q15. Subsequently, we ascertained five additional consanguineous families in which deafness segregated with markers at this locus and refined the critical interval to 2.31 Mb. We then sequenced the protein-coding exons of 18 genes in this interval. The affected individuals of six apparently unrelated families were homozygous for the same transversion (c.265T>G) in MSRB3, which encodes a zinc-containing methionine sulfoxide reductase B3. c.265T>G results in a substitution of glycine for cysteine (p.Cys89Gly), and this substitution cosegregates with deafness in the six DFNB74 families. This cysteine residue of MSRB3 is conserved in orthologs from yeast to humans and is involved in binding structural zinc. In vitro, p.Cys89Gly abolished zinc binding and MSRB3 enzymatic activity, indicating that p.Cys89Gly is a loss-of-function allele. The affected individuals in two other families were homozygous for a transition mutation (c.55T>C), which results in a nonsense mutation (p.Arg19X) in alternatively spliced exon 3, encoding a mitochondrial localization signal. This finding suggests that DFNB74 deafness is due to a mitochondrial dysfunction. In a cohort of 1,040 individuals (aged 53–67 years) of European ancestry, we found no association between 17 tagSNPs for MSRB3 and age-related hearing loss. Mouse Msrb3 is expressed widely. In the inner ear, it is found in the sensory epithelium of the organ of Corti and vestibular end organs as well as in cells of the spiral ganglion. Taken together, MSRB3-catalyzed reduction of methionine sulfoxides to methionine is essential for hearing.  相似文献   
57.
Δ9-tetrahydrocannabinol is the active constituent in Cannabis sativa, with reported analgesic, anti-emetic, anti-oxidative, neuroprotective, and anti-inflammatory activities. Δ9-THC has been used to treat a number of disease states including pain, anxiety, asthma, glaucoma, and hypertension. Poor water solubility of Δ9-THC greatly reduces its clinical effectiveness. Consequently, there is a need to modify the compound to increase its polarity and pharmaceutical efficacy. The aim of this study was to test the capability of Catharanthus roseus suspension cultured cells to convert Δ9-THC into more polar derivatives. The transformed metabolites were analyzed and isolated by HPLC. Structures of some new derivatives were proposed on the basis of molecular ion peaks and fragmentation patterns obtained from LC-MS and UV spectra obtained by HPLC, respectively. Δ9-THC was rapidly absorbed by Catharanthus roseus cultured cells and upon biotransformation new glycosylated and hydroxylated derivatives were isolated by preparative HPLC. In addition, cannabinol was detected as degradation product, including its glycosylated derivative. Based on these results, it is concluded that Catharanthus cultured cells have great potential to transform Δ9-THC into more polar derivatives and can be used for the large scale production of new cannabinoids, which can be a source of new compounds with interesting pharmacological profiles.  相似文献   
58.

Background

Pakistan covers a key geographic area in human history, being both part of the Indus River region that acted as one of the cradles of civilization and as a link between Western Eurasia and Eastern Asia. This region is inhabited by a number of distinct ethnic groups, the largest being the Punjabi, Pathan (Pakhtuns), Sindhi, and Baloch.

Results

We analyzed the first ethnic male Pathan genome by sequencing it to 29.7-fold coverage using the Illumina HiSeq2000 platform. A total of 3.8 million single nucleotide variations (SNVs) and 0.5 million small indels were identified by comparing with the human reference genome. Among the SNVs, 129,441 were novel, and 10,315 nonsynonymous SNVs were found in 5,344 genes. SNVs were annotated for health consequences and high risk diseases, as well as possible influences on drug efficacy. We confirmed that the Pathan genome presented here is representative of this ethnic group by comparing it to a panel of Central Asians from the HGDP-CEPH panels typed for ~650 k SNPs. The mtDNA (H2) and Y haplogroup (L1) of this individual were also typical of his geographic region of origin. Finally, we reconstruct the demographic history by PSMC, which highlights a recent increase in effective population size compatible with admixture between European and Asian lineages expected in this geographic region.

Conclusions

We present a whole-genome sequence and analyses of an ethnic Pathan from the north-west province of Pakistan. It is a useful resource to understand genetic variation and human migration across the whole Asian continent.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1290-1) contains supplementary material, which is available to authorized users.  相似文献   
59.
PurposeTo identify the molecular basis of non-syndromic autosomal recessive congenital cataracts (arCC) in a consanguineous family.MethodsAll family members participating in the study received a comprehensive ophthalmic examination to determine their ocular phenotype and contributed a blood sample, from which genomic DNA was extracted. Available medical records and interviews with the family were used to compile the medical history of the family. The symptomatic history of the individuals exhibiting cataracts was confirmed by slit-lamp biomicroscopy. A genome-wide linkage analysis was performed to localize the disease interval. The candidate gene, LIM2 (lens intrinsic membrane protein 2), was sequenced bi-directionally to identify the disease-causing mutation. The physical changes caused by the mutation were analyzed in silico through homology modeling, mutation and bioinformatic algorithms, and evolutionary conservation databases. The physiological importance of LIM2 to ocular development was assessed in vivo by real-time expression analysis of Lim2 in a mouse model.ResultsOphthalmic examination confirmed the diagnosis of nuclear cataracts in the affected members of the family; the inheritance pattern and cataract development in early infancy indicated arCC. Genome-wide linkage analysis localized the critical interval to chromosome 19q with a two-point logarithm of odds (LOD) score of 3.25. Bidirectional sequencing identified a novel missense mutation, c.233G>A (p.G78D) in LIM2. This mutation segregated with the disease phenotype and was absent in 192 ethnically matched control chromosomes. In silico analysis predicted lower hydropathicity and hydrophobicity but higher polarity of the mutant LIM2-encoded protein (MP19) compared to the wild-type. Moreover, these analyses predicted that the mutation would disrupt the secondary structure of a transmembrane domain of MP19. The expression of Lim2, which was detected in the mouse lens as early as embryonic day 15 (E15) increased after birth to a level that was sustained through the postnatal time points.ConclusionA novel missense mutation in LIM2 is responsible for autosomal recessive congenital cataracts.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号